st/x.c

2125 lines
48 KiB
C
Raw Permalink Normal View History

2017-01-20 03:06:39 -05:00
/* See LICENSE for license details. */
#include <errno.h>
2018-03-09 09:36:38 -05:00
#include <math.h>
#include <limits.h>
2017-01-20 03:06:39 -05:00
#include <locale.h>
#include <signal.h>
#include <sys/select.h>
#include <time.h>
#include <unistd.h>
#include <libgen.h>
#include <X11/Xatom.h>
#include <X11/Xlib.h>
#include <X11/cursorfont.h>
#include <X11/keysym.h>
#include <X11/Xft/Xft.h>
#include <X11/XKBlib.h>
char *argv0;
2017-01-20 03:06:39 -05:00
#include "arg.h"
#include "st.h"
#include "win.h"
2017-01-20 03:06:39 -05:00
/* types used in config.h */
typedef struct {
uint mod;
KeySym keysym;
void (*func)(const Arg *);
const Arg arg;
} Shortcut;
typedef struct {
uint mod;
uint button;
void (*func)(const Arg *);
const Arg arg;
uint release;
} MouseShortcut;
typedef struct {
KeySym k;
uint mask;
char *s;
/* three-valued logic variables: 0 indifferent, 1 on, -1 off */
signed char appkey; /* application keypad */
signed char appcursor; /* application cursor */
} Key;
/* X modifiers */
#define XK_ANY_MOD UINT_MAX
#define XK_NO_MOD 0
#define XK_SWITCH_MOD (1<<13|1<<14)
/* function definitions used in config.h */
static void clipcopy(const Arg *);
static void clippaste(const Arg *);
static void numlock(const Arg *);
static void selpaste(const Arg *);
static void zoom(const Arg *);
static void zoomabs(const Arg *);
static void zoomreset(const Arg *);
static void ttysend(const Arg *);
/* config.h for applying patches and the configuration. */
#include "config.h"
2017-01-20 03:06:39 -05:00
/* XEMBED messages */
#define XEMBED_FOCUS_IN 4
#define XEMBED_FOCUS_OUT 5
/* macros */
#define IS_SET(flag) ((win.mode & (flag)) != 0)
2017-01-20 03:06:39 -05:00
#define TRUERED(x) (((x) & 0xff0000) >> 8)
#define TRUEGREEN(x) (((x) & 0xff00))
#define TRUEBLUE(x) (((x) & 0xff) << 8)
typedef XftDraw *Draw;
typedef XftColor Color;
typedef XftGlyphFontSpec GlyphFontSpec;
2017-01-20 03:06:39 -05:00
/* Purely graphic info */
typedef struct {
int tw, th; /* tty width and height */
int w, h; /* window width and height */
int ch; /* char height */
int cw; /* char width */
int mode; /* window state/mode flags */
int cursor; /* cursor style */
} TermWindow;
2017-01-20 03:06:39 -05:00
typedef struct {
Display *dpy;
Colormap cmap;
Window win;
Drawable buf;
GlyphFontSpec *specbuf; /* font spec buffer used for rendering */
Atom xembed, wmdeletewin, netwmname, netwmiconname, netwmpid;
struct {
XIM xim;
XIC xic;
XPoint spot;
XVaNestedList spotlist;
} ime;
2017-01-20 03:06:39 -05:00
Draw draw;
Visual *vis;
XSetWindowAttributes attrs;
2016-12-21 15:48:07 -05:00
/* Here, we use the term *pointer* to differentiate the cursor
* one sees when hovering the mouse over the terminal from, e.g.,
* a green rectangle where text would be entered. */
Cursor vpointer, bpointer; /* visible and hidden pointers */
int pointerisvisible;
2017-01-20 03:06:39 -05:00
int scr;
int isfixed; /* is fixed geometry? */
int l, t; /* left and top offset */
int gm; /* geometry mask */
} XWindow;
typedef struct {
Atom xtarget;
char *primary, *clipboard;
struct timespec tclick1;
struct timespec tclick2;
2017-01-20 03:06:39 -05:00
} XSelection;
/* Font structure */
#define Font Font_
2017-01-20 03:06:39 -05:00
typedef struct {
int height;
int width;
int ascent;
int descent;
int badslant;
int badweight;
short lbearing;
short rbearing;
XftFont *match;
FcFontSet *set;
FcPattern *pattern;
} Font;
/* Drawing Context */
typedef struct {
Color *col;
size_t collen;
Font font, bfont, ifont, ibfont;
GC gc;
} DC;
static inline ushort sixd_to_16bit(int);
static int xmakeglyphfontspecs(XftGlyphFontSpec *, const Glyph *, int, int, int);
static void xdrawglyphfontspecs(const XftGlyphFontSpec *, Glyph, int, int, int);
static void xdrawglyph(Glyph, int, int);
static void xclear(int, int, int, int);
static int xgeommasktogravity(int);
static int ximopen(Display *);
static void ximinstantiate(Display *, XPointer, XPointer);
static void ximdestroy(XIM, XPointer, XPointer);
static int xicdestroy(XIC, XPointer, XPointer);
static void xinit(int, int);
static void cresize(int, int);
static void xresize(int, int);
static void xhints(void);
static int xloadcolor(int, const char *, Color *);
2017-01-20 03:06:39 -05:00
static int xloadfont(Font *, FcPattern *);
static void xloadfonts(const char *, double);
2017-01-20 03:06:39 -05:00
static void xunloadfont(Font *);
static void xunloadfonts(void);
static void xsetenv(void);
static void xseturgency(int);
static int evcol(XEvent *);
static int evrow(XEvent *);
2017-01-20 03:06:39 -05:00
static void expose(XEvent *);
static void visibility(XEvent *);
static void unmap(XEvent *);
static void kpress(XEvent *);
static void cmessage(XEvent *);
static void resize(XEvent *);
static void focus(XEvent *);
static uint buttonmask(uint);
static int mouseaction(XEvent *, uint);
2017-01-20 03:06:39 -05:00
static void brelease(XEvent *);
static void bpress(XEvent *);
static void bmotion(XEvent *);
static void propnotify(XEvent *);
static void selnotify(XEvent *);
static void selclear_(XEvent *);
static void selrequest(XEvent *);
static void setsel(char *, Time);
static void mousesel(XEvent *, int);
2017-01-20 03:06:39 -05:00
static void mousereport(XEvent *);
static char *kmap(KeySym, uint);
static int match(uint, uint);
2017-01-20 03:06:39 -05:00
static void run(void);
static void usage(void);
2017-01-20 03:06:39 -05:00
static void (*handler[LASTEvent])(XEvent *) = {
[KeyPress] = kpress,
[ClientMessage] = cmessage,
[ConfigureNotify] = resize,
[VisibilityNotify] = visibility,
[UnmapNotify] = unmap,
[Expose] = expose,
[FocusIn] = focus,
[FocusOut] = focus,
[MotionNotify] = bmotion,
[ButtonPress] = bpress,
[ButtonRelease] = brelease,
/*
* Uncomment if you want the selection to disappear when you select something
* different in another window.
*/
/* [SelectionClear] = selclear_, */
[SelectionNotify] = selnotify,
/*
* PropertyNotify is only turned on when there is some INCR transfer happening
* for the selection retrieval.
*/
[PropertyNotify] = propnotify,
[SelectionRequest] = selrequest,
};
/* Globals */
static DC dc;
static XWindow xw;
static XSelection xsel;
static TermWindow win;
2017-01-20 03:06:39 -05:00
/* Font Ring Cache */
enum {
FRC_NORMAL,
FRC_ITALIC,
FRC_BOLD,
FRC_ITALICBOLD
};
typedef struct {
XftFont *font;
int flags;
Rune unicodep;
} Fontcache;
/* Fontcache is an array now. A new font will be appended to the array. */
static Fontcache *frc = NULL;
2017-01-20 03:06:39 -05:00
static int frclen = 0;
static int frccap = 0;
static char *usedfont = NULL;
static double usedfontsize = 0;
static double defaultfontsize = 0;
2017-01-20 03:06:39 -05:00
static char *opt_class = NULL;
static char **opt_cmd = NULL;
static char *opt_embed = NULL;
static char *opt_font = NULL;
static char *opt_io = NULL;
static char *opt_line = NULL;
static char *opt_name = NULL;
static char *opt_title = NULL;
static uint buttons; /* bit field of pressed buttons */
void
clipcopy(const Arg *dummy)
{
Atom clipboard;
free(xsel.clipboard);
xsel.clipboard = NULL;
if (xsel.primary != NULL) {
xsel.clipboard = xstrdup(xsel.primary);
clipboard = XInternAtom(xw.dpy, "CLIPBOARD", 0);
XSetSelectionOwner(xw.dpy, clipboard, xw.win, CurrentTime);
}
}
void
clippaste(const Arg *dummy)
{
Atom clipboard;
clipboard = XInternAtom(xw.dpy, "CLIPBOARD", 0);
XConvertSelection(xw.dpy, clipboard, xsel.xtarget, clipboard,
xw.win, CurrentTime);
}
void
selpaste(const Arg *dummy)
{
XConvertSelection(xw.dpy, XA_PRIMARY, xsel.xtarget, XA_PRIMARY,
xw.win, CurrentTime);
}
void
numlock(const Arg *dummy)
{
win.mode ^= MODE_NUMLOCK;
}
void
zoom(const Arg *arg)
{
Arg larg;
larg.f = usedfontsize + arg->f;
zoomabs(&larg);
}
void
zoomabs(const Arg *arg)
{
xunloadfonts();
xloadfonts(usedfont, arg->f);
cresize(0, 0);
redraw();
xhints();
}
void
zoomreset(const Arg *arg)
{
Arg larg;
if (defaultfontsize > 0) {
larg.f = defaultfontsize;
zoomabs(&larg);
}
}
void
ttysend(const Arg *arg)
{
ttywrite(arg->s, strlen(arg->s), 1);
}
int
evcol(XEvent *e)
{
int x = e->xbutton.x - borderpx;
LIMIT(x, 0, win.tw - 1);
return x / win.cw;
}
int
evrow(XEvent *e)
{
int y = e->xbutton.y - borderpx;
LIMIT(y, 0, win.th - 1);
return y / win.ch;
}
2017-01-20 03:06:39 -05:00
void
mousesel(XEvent *e, int done)
2017-01-20 03:06:39 -05:00
{
int type, seltype = SEL_REGULAR;
uint state = e->xbutton.state & ~(Button1Mask | forcemousemod);
2017-01-20 03:06:39 -05:00
for (type = 1; type < LEN(selmasks); ++type) {
2017-01-20 03:06:39 -05:00
if (match(selmasks[type], state)) {
seltype = type;
2017-01-20 03:06:39 -05:00
break;
}
}
selextend(evcol(e), evrow(e), seltype, done);
if (done)
setsel(getsel(), e->xbutton.time);
2017-01-20 03:06:39 -05:00
}
void
mousereport(XEvent *e)
{
int len, btn, code;
int x = evcol(e), y = evrow(e);
int state = e->xbutton.state;
2017-01-20 03:06:39 -05:00
char buf[40];
static int ox, oy;
if (e->type == MotionNotify) {
2017-01-20 03:06:39 -05:00
if (x == ox && y == oy)
return;
if (!IS_SET(MODE_MOUSEMOTION) && !IS_SET(MODE_MOUSEMANY))
return;
/* MODE_MOUSEMOTION: no reporting if no button is pressed */
if (IS_SET(MODE_MOUSEMOTION) && buttons == 0)
2017-01-20 03:06:39 -05:00
return;
/* Set btn to lowest-numbered pressed button, or 12 if no
* buttons are pressed. */
for (btn = 1; btn <= 11 && !(buttons & (1<<(btn-1))); btn++)
;
code = 32;
2017-01-20 03:06:39 -05:00
} else {
btn = e->xbutton.button;
/* Only buttons 1 through 11 can be encoded */
if (btn < 1 || btn > 11)
return;
if (e->type == ButtonRelease) {
2017-01-20 03:06:39 -05:00
/* MODE_MOUSEX10: no button release reporting */
if (IS_SET(MODE_MOUSEX10))
return;
/* Don't send release events for the scroll wheel */
if (btn == 4 || btn == 5)
2017-01-20 03:06:39 -05:00
return;
}
code = 0;
2017-01-20 03:06:39 -05:00
}
ox = x;
oy = y;
/* Encode btn into code. If no button is pressed for a motion event in
* MODE_MOUSEMANY, then encode it as a release. */
if ((!IS_SET(MODE_MOUSESGR) && e->type == ButtonRelease) || btn == 12)
code += 3;
else if (btn >= 8)
code += 128 + btn - 8;
else if (btn >= 4)
code += 64 + btn - 4;
else
code += btn - 1;
2017-01-20 03:06:39 -05:00
if (!IS_SET(MODE_MOUSEX10)) {
code += ((state & ShiftMask ) ? 4 : 0)
+ ((state & Mod1Mask ) ? 8 : 0) /* meta key: alt */
+ ((state & ControlMask) ? 16 : 0);
2017-01-20 03:06:39 -05:00
}
if (IS_SET(MODE_MOUSESGR)) {
len = snprintf(buf, sizeof(buf), "\033[<%d;%d;%d%c",
code, x+1, y+1,
e->type == ButtonRelease ? 'm' : 'M');
2017-01-20 03:06:39 -05:00
} else if (x < 223 && y < 223) {
len = snprintf(buf, sizeof(buf), "\033[M%c%c%c",
32+code, 32+x+1, 32+y+1);
2017-01-20 03:06:39 -05:00
} else {
return;
}
ttywrite(buf, len, 0);
2017-01-20 03:06:39 -05:00
}
uint
buttonmask(uint button)
{
return button == Button1 ? Button1Mask
: button == Button2 ? Button2Mask
: button == Button3 ? Button3Mask
: button == Button4 ? Button4Mask
: button == Button5 ? Button5Mask
: 0;
}
int
mouseaction(XEvent *e, uint release)
{
MouseShortcut *ms;
/* ignore Button<N>mask for Button<N> - it's set on release */
uint state = e->xbutton.state & ~buttonmask(e->xbutton.button);
for (ms = mshortcuts; ms < mshortcuts + LEN(mshortcuts); ms++) {
if (ms->release == release &&
ms->button == e->xbutton.button &&
(match(ms->mod, state) || /* exact or forced */
match(ms->mod, state & ~forcemousemod))) {
ms->func(&(ms->arg));
return 1;
}
}
return 0;
}
2017-01-20 03:06:39 -05:00
void
bpress(XEvent *e)
{
int btn = e->xbutton.button;
2017-01-20 03:06:39 -05:00
struct timespec now;
int snap;
2017-01-20 03:06:39 -05:00
if (1 <= btn && btn <= 11)
buttons |= 1 << (btn-1);
if (IS_SET(MODE_MOUSE) && !(e->xbutton.state & forcemousemod)) {
2017-01-20 03:06:39 -05:00
mousereport(e);
return;
}
if (mouseaction(e, 0))
return;
2017-01-20 03:06:39 -05:00
if (btn == Button1) {
2017-01-20 03:06:39 -05:00
/*
* If the user clicks below predefined timeouts specific
* snapping behaviour is exposed.
*/
clock_gettime(CLOCK_MONOTONIC, &now);
if (TIMEDIFF(now, xsel.tclick2) <= tripleclicktimeout) {
snap = SNAP_LINE;
} else if (TIMEDIFF(now, xsel.tclick1) <= doubleclicktimeout) {
snap = SNAP_WORD;
2017-01-20 03:06:39 -05:00
} else {
snap = 0;
2017-01-20 03:06:39 -05:00
}
xsel.tclick2 = xsel.tclick1;
xsel.tclick1 = now;
selstart(evcol(e), evrow(e), snap);
2017-01-20 03:06:39 -05:00
}
}
void
propnotify(XEvent *e)
{
XPropertyEvent *xpev;
Atom clipboard = XInternAtom(xw.dpy, "CLIPBOARD", 0);
xpev = &e->xproperty;
if (xpev->state == PropertyNewValue &&
(xpev->atom == XA_PRIMARY ||
xpev->atom == clipboard)) {
selnotify(e);
}
}
void
selnotify(XEvent *e)
{
ulong nitems, ofs, rem;
int format;
uchar *data, *last, *repl;
Atom type, incratom, property = None;
2017-01-20 03:06:39 -05:00
incratom = XInternAtom(xw.dpy, "INCR", 0);
ofs = 0;
if (e->type == SelectionNotify)
2017-01-20 03:06:39 -05:00
property = e->xselection.property;
else if (e->type == PropertyNotify)
2017-01-20 03:06:39 -05:00
property = e->xproperty.atom;
2017-01-20 03:06:39 -05:00
if (property == None)
return;
do {
if (XGetWindowProperty(xw.dpy, xw.win, property, ofs,
BUFSIZ/4, False, AnyPropertyType,
&type, &format, &nitems, &rem,
&data)) {
fprintf(stderr, "Clipboard allocation failed\n");
return;
}
if (e->type == PropertyNotify && nitems == 0 && rem == 0) {
/*
* If there is some PropertyNotify with no data, then
* this is the signal of the selection owner that all
* data has been transferred. We won't need to receive
* PropertyNotify events anymore.
*/
MODBIT(xw.attrs.event_mask, 0, PropertyChangeMask);
XChangeWindowAttributes(xw.dpy, xw.win, CWEventMask,
&xw.attrs);
}
if (type == incratom) {
/*
* Activate the PropertyNotify events so we receive
* when the selection owner does send us the next
* chunk of data.
*/
MODBIT(xw.attrs.event_mask, 1, PropertyChangeMask);
XChangeWindowAttributes(xw.dpy, xw.win, CWEventMask,
&xw.attrs);
/*
* Deleting the property is the transfer start signal.
*/
XDeleteProperty(xw.dpy, xw.win, (int)property);
continue;
}
/*
* As seen in getsel:
* Line endings are inconsistent in the terminal and GUI world
* copy and pasting. When receiving some selection data,
* replace all '\n' with '\r'.
* FIXME: Fix the computer world.
*/
repl = data;
last = data + nitems * format / 8;
while ((repl = memchr(repl, '\n', last - repl))) {
*repl++ = '\r';
}
if (IS_SET(MODE_BRCKTPASTE) && ofs == 0)
ttywrite("\033[200~", 6, 0);
ttywrite((char *)data, nitems * format / 8, 1);
2017-01-20 03:06:39 -05:00
if (IS_SET(MODE_BRCKTPASTE) && rem == 0)
ttywrite("\033[201~", 6, 0);
2017-01-20 03:06:39 -05:00
XFree(data);
/* number of 32-bit chunks returned */
ofs += nitems * format / 32;
} while (rem > 0);
/*
* Deleting the property again tells the selection owner to send the
* next data chunk in the property.
*/
XDeleteProperty(xw.dpy, xw.win, (int)property);
}
void
xclipcopy(void)
{
clipcopy(NULL);
2017-01-20 03:06:39 -05:00
}
void
selclear_(XEvent *e)
{
selclear();
}
void
selrequest(XEvent *e)
{
XSelectionRequestEvent *xsre;
XSelectionEvent xev;
Atom xa_targets, string, clipboard;
char *seltext;
xsre = (XSelectionRequestEvent *) e;
xev.type = SelectionNotify;
xev.requestor = xsre->requestor;
xev.selection = xsre->selection;
xev.target = xsre->target;
xev.time = xsre->time;
if (xsre->property == None)
xsre->property = xsre->target;
/* reject */
xev.property = None;
xa_targets = XInternAtom(xw.dpy, "TARGETS", 0);
if (xsre->target == xa_targets) {
/* respond with the supported type */
string = xsel.xtarget;
XChangeProperty(xsre->display, xsre->requestor, xsre->property,
XA_ATOM, 32, PropModeReplace,
(uchar *) &string, 1);
xev.property = xsre->property;
} else if (xsre->target == xsel.xtarget || xsre->target == XA_STRING) {
/*
* xith XA_STRING non ascii characters may be incorrect in the
* requestor. It is not our problem, use utf8.
*/
clipboard = XInternAtom(xw.dpy, "CLIPBOARD", 0);
if (xsre->selection == XA_PRIMARY) {
seltext = xsel.primary;
2017-01-20 03:06:39 -05:00
} else if (xsre->selection == clipboard) {
seltext = xsel.clipboard;
2017-01-20 03:06:39 -05:00
} else {
fprintf(stderr,
"Unhandled clipboard selection 0x%lx\n",
xsre->selection);
return;
}
if (seltext != NULL) {
XChangeProperty(xsre->display, xsre->requestor,
xsre->property, xsre->target,
8, PropModeReplace,
(uchar *)seltext, strlen(seltext));
xev.property = xsre->property;
}
}
/* all done, send a notification to the listener */
if (!XSendEvent(xsre->display, xsre->requestor, 1, 0, (XEvent *) &xev))
fprintf(stderr, "Error sending SelectionNotify event\n");
}
void
setsel(char *str, Time t)
2017-01-20 03:06:39 -05:00
{
if (!str)
return;
free(xsel.primary);
xsel.primary = str;
2017-01-20 03:06:39 -05:00
XSetSelectionOwner(xw.dpy, XA_PRIMARY, xw.win, t);
if (XGetSelectionOwner(xw.dpy, XA_PRIMARY) != xw.win)
selclear();
2017-01-20 03:06:39 -05:00
}
void
xsetsel(char *str)
{
setsel(str, CurrentTime);
clipcopy(NULL);
}
2017-01-20 03:06:39 -05:00
void
brelease(XEvent *e)
{
int btn = e->xbutton.button;
if (1 <= btn && btn <= 11)
buttons &= ~(1 << (btn-1));
if (IS_SET(MODE_MOUSE) && !(e->xbutton.state & forcemousemod)) {
2017-01-20 03:06:39 -05:00
mousereport(e);
return;
}
if (mouseaction(e, 1))
return;
if (btn == Button1)
mousesel(e, 1);
2017-01-20 03:06:39 -05:00
}
void
bmotion(XEvent *e)
{
2016-12-21 15:48:07 -05:00
if (!xw.pointerisvisible) {
XDefineCursor(xw.dpy, xw.win, xw.vpointer);
xw.pointerisvisible = 1;
if (!IS_SET(MODE_MOUSEMANY))
xsetpointermotion(0);
}
if (IS_SET(MODE_MOUSE) && !(e->xbutton.state & forcemousemod)) {
2017-01-20 03:06:39 -05:00
mousereport(e);
return;
}
mousesel(e, 0);
2017-01-20 03:06:39 -05:00
}
void
cresize(int width, int height)
{
int col, row;
if (width != 0)
win.w = width;
if (height != 0)
win.h = height;
col = (win.w - 2 * borderpx) / win.cw;
row = (win.h - 2 * borderpx) / win.ch;
col = MAX(1, col);
row = MAX(1, row);
tresize(col, row);
xresize(col, row);
ttyresize(win.tw, win.th);
}
2017-01-20 03:06:39 -05:00
void
xresize(int col, int row)
{
win.tw = col * win.cw;
win.th = row * win.ch;
2017-01-20 03:06:39 -05:00
XFreePixmap(xw.dpy, xw.buf);
xw.buf = XCreatePixmap(xw.dpy, xw.win, win.w, win.h,
DefaultDepth(xw.dpy, xw.scr));
XftDrawChange(xw.draw, xw.buf);
xclear(0, 0, win.w, win.h);
/* resize to new width */
xw.specbuf = xrealloc(xw.specbuf, col * sizeof(GlyphFontSpec));
2017-01-20 03:06:39 -05:00
}
ushort
sixd_to_16bit(int x)
{
return x == 0 ? 0 : 0x3737 + 0x2828 * x;
}
int
xloadcolor(int i, const char *name, Color *ncolor)
{
XRenderColor color = { .alpha = 0xffff };
if (!name) {
if (BETWEEN(i, 16, 255)) { /* 256 color */
if (i < 6*6*6+16) { /* same colors as xterm */
color.red = sixd_to_16bit( ((i-16)/36)%6 );
color.green = sixd_to_16bit( ((i-16)/6) %6 );
color.blue = sixd_to_16bit( ((i-16)/1) %6 );
} else { /* greyscale */
color.red = 0x0808 + 0x0a0a * (i - (6*6*6+16));
color.green = color.blue = color.red;
}
return XftColorAllocValue(xw.dpy, xw.vis,
xw.cmap, &color, ncolor);
} else
name = colorname[i];
}
return XftColorAllocName(xw.dpy, xw.vis, xw.cmap, name, ncolor);
}
void
xloadcols(void)
{
int i;
static int loaded;
Color *cp;
if (loaded) {
for (cp = dc.col; cp < &dc.col[dc.collen]; ++cp)
XftColorFree(xw.dpy, xw.vis, xw.cmap, cp);
} else {
dc.collen = MAX(LEN(colorname), 256);
dc.col = xmalloc(dc.collen * sizeof(Color));
2017-01-20 03:06:39 -05:00
}
for (i = 0; i < dc.collen; i++)
if (!xloadcolor(i, NULL, &dc.col[i])) {
if (colorname[i])
die("could not allocate color '%s'\n", colorname[i]);
2017-01-20 03:06:39 -05:00
else
die("could not allocate color %d\n", i);
2017-01-20 03:06:39 -05:00
}
loaded = 1;
}
2021-12-26 12:57:04 -05:00
int
xgetcolor(int x, unsigned char *r, unsigned char *g, unsigned char *b)
{
if (!BETWEEN(x, 0, dc.collen - 1))
2021-12-26 12:57:04 -05:00
return 1;
*r = dc.col[x].color.red >> 8;
*g = dc.col[x].color.green >> 8;
*b = dc.col[x].color.blue >> 8;
return 0;
}
2017-01-20 03:06:39 -05:00
int
xsetcolorname(int x, const char *name)
{
Color ncolor;
if (!BETWEEN(x, 0, dc.collen - 1))
2017-01-20 03:06:39 -05:00
return 1;
if (!xloadcolor(x, name, &ncolor))
return 1;
XftColorFree(xw.dpy, xw.vis, xw.cmap, &dc.col[x]);
dc.col[x] = ncolor;
return 0;
}
/*
* Absolute coordinates.
*/
void
xclear(int x1, int y1, int x2, int y2)
{
XftDrawRect(xw.draw,
&dc.col[IS_SET(MODE_REVERSE)? defaultfg : defaultbg],
x1, y1, x2-x1, y2-y1);
}
void
xhints(void)
{
XClassHint class = {opt_name ? opt_name : termname,
opt_class ? opt_class : termname};
XWMHints wm = {.flags = InputHint, .input = 1};
2018-03-09 09:36:25 -05:00
XSizeHints *sizeh;
2017-01-20 03:06:39 -05:00
sizeh = XAllocSizeHints();
sizeh->flags = PSize | PResizeInc | PBaseSize | PMinSize;
2017-01-20 03:06:39 -05:00
sizeh->height = win.h;
sizeh->width = win.w;
sizeh->height_inc = win.ch;
sizeh->width_inc = win.cw;
sizeh->base_height = 2 * borderpx;
sizeh->base_width = 2 * borderpx;
sizeh->min_height = win.ch + 2 * borderpx;
sizeh->min_width = win.cw + 2 * borderpx;
2017-01-20 03:06:39 -05:00
if (xw.isfixed) {
sizeh->flags |= PMaxSize;
2017-01-20 03:06:39 -05:00
sizeh->min_width = sizeh->max_width = win.w;
sizeh->min_height = sizeh->max_height = win.h;
}
if (xw.gm & (XValue|YValue)) {
sizeh->flags |= USPosition | PWinGravity;
sizeh->x = xw.l;
sizeh->y = xw.t;
sizeh->win_gravity = xgeommasktogravity(xw.gm);
}
XSetWMProperties(xw.dpy, xw.win, NULL, NULL, NULL, 0, sizeh, &wm,
&class);
XFree(sizeh);
}
int
xgeommasktogravity(int mask)
{
switch (mask & (XNegative|YNegative)) {
case 0:
return NorthWestGravity;
case XNegative:
return NorthEastGravity;
case YNegative:
return SouthWestGravity;
}
return SouthEastGravity;
}
int
xloadfont(Font *f, FcPattern *pattern)
{
FcPattern *configured;
FcPattern *match;
FcResult result;
XGlyphInfo extents;
int wantattr, haveattr;
/*
* Manually configure instead of calling XftMatchFont
* so that we can use the configured pattern for
* "missing glyph" lookups.
*/
configured = FcPatternDuplicate(pattern);
if (!configured)
return 1;
FcConfigSubstitute(NULL, configured, FcMatchPattern);
XftDefaultSubstitute(xw.dpy, xw.scr, configured);
match = FcFontMatch(NULL, configured, &result);
if (!match) {
FcPatternDestroy(configured);
return 1;
}
if (!(f->match = XftFontOpenPattern(xw.dpy, match))) {
FcPatternDestroy(configured);
FcPatternDestroy(match);
return 1;
}
if ((XftPatternGetInteger(pattern, "slant", 0, &wantattr) ==
XftResultMatch)) {
/*
* Check if xft was unable to find a font with the appropriate
* slant but gave us one anyway. Try to mitigate.
*/
if ((XftPatternGetInteger(f->match->pattern, "slant", 0,
&haveattr) != XftResultMatch) || haveattr < wantattr) {
f->badslant = 1;
fputs("font slant does not match\n", stderr);
2017-01-20 03:06:39 -05:00
}
}
if ((XftPatternGetInteger(pattern, "weight", 0, &wantattr) ==
XftResultMatch)) {
if ((XftPatternGetInteger(f->match->pattern, "weight", 0,
&haveattr) != XftResultMatch) || haveattr != wantattr) {
f->badweight = 1;
fputs("font weight does not match\n", stderr);
2017-01-20 03:06:39 -05:00
}
}
XftTextExtentsUtf8(xw.dpy, f->match,
(const FcChar8 *) ascii_printable,
strlen(ascii_printable), &extents);
f->set = NULL;
f->pattern = configured;
f->ascent = f->match->ascent;
f->descent = f->match->descent;
f->lbearing = 0;
f->rbearing = f->match->max_advance_width;
f->height = f->ascent + f->descent;
f->width = DIVCEIL(extents.xOff, strlen(ascii_printable));
return 0;
}
void
xloadfonts(const char *fontstr, double fontsize)
2017-01-20 03:06:39 -05:00
{
FcPattern *pattern;
double fontval;
if (fontstr[0] == '-')
2017-01-20 03:06:39 -05:00
pattern = XftXlfdParse(fontstr, False, False);
else
pattern = FcNameParse((const FcChar8 *)fontstr);
2017-01-20 03:06:39 -05:00
if (!pattern)
die("can't open font %s\n", fontstr);
2017-01-20 03:06:39 -05:00
if (fontsize > 1) {
FcPatternDel(pattern, FC_PIXEL_SIZE);
FcPatternDel(pattern, FC_SIZE);
FcPatternAddDouble(pattern, FC_PIXEL_SIZE, (double)fontsize);
usedfontsize = fontsize;
} else {
if (FcPatternGetDouble(pattern, FC_PIXEL_SIZE, 0, &fontval) ==
FcResultMatch) {
usedfontsize = fontval;
} else if (FcPatternGetDouble(pattern, FC_SIZE, 0, &fontval) ==
FcResultMatch) {
usedfontsize = -1;
} else {
/*
* Default font size is 12, if none given. This is to
* have a known usedfontsize value.
*/
FcPatternAddDouble(pattern, FC_PIXEL_SIZE, 12);
usedfontsize = 12;
}
defaultfontsize = usedfontsize;
}
if (xloadfont(&dc.font, pattern))
die("can't open font %s\n", fontstr);
2017-01-20 03:06:39 -05:00
if (usedfontsize < 0) {
FcPatternGetDouble(dc.font.match->pattern,
FC_PIXEL_SIZE, 0, &fontval);
usedfontsize = fontval;
if (fontsize == 0)
defaultfontsize = fontval;
}
/* Setting character width and height. */
win.cw = ceilf(dc.font.width * cwscale);
win.ch = ceilf(dc.font.height * chscale);
FcPatternDel(pattern, FC_SLANT);
FcPatternAddInteger(pattern, FC_SLANT, FC_SLANT_ITALIC);
if (xloadfont(&dc.ifont, pattern))
die("can't open font %s\n", fontstr);
2017-01-20 03:06:39 -05:00
FcPatternDel(pattern, FC_WEIGHT);
FcPatternAddInteger(pattern, FC_WEIGHT, FC_WEIGHT_BOLD);
if (xloadfont(&dc.ibfont, pattern))
die("can't open font %s\n", fontstr);
2017-01-20 03:06:39 -05:00
FcPatternDel(pattern, FC_SLANT);
FcPatternAddInteger(pattern, FC_SLANT, FC_SLANT_ROMAN);
if (xloadfont(&dc.bfont, pattern))
die("can't open font %s\n", fontstr);
2017-01-20 03:06:39 -05:00
FcPatternDestroy(pattern);
}
void
xunloadfont(Font *f)
{
XftFontClose(xw.dpy, f->match);
FcPatternDestroy(f->pattern);
if (f->set)
FcFontSetDestroy(f->set);
}
void
xunloadfonts(void)
{
/* Free the loaded fonts in the font cache. */
while (frclen > 0)
XftFontClose(xw.dpy, frc[--frclen].font);
xunloadfont(&dc.font);
xunloadfont(&dc.bfont);
xunloadfont(&dc.ifont);
xunloadfont(&dc.ibfont);
}
int
ximopen(Display *dpy)
{
XIMCallback imdestroy = { .client_data = NULL, .callback = ximdestroy };
XICCallback icdestroy = { .client_data = NULL, .callback = xicdestroy };
xw.ime.xim = XOpenIM(xw.dpy, NULL, NULL, NULL);
if (xw.ime.xim == NULL)
return 0;
if (XSetIMValues(xw.ime.xim, XNDestroyCallback, &imdestroy, NULL))
fprintf(stderr, "XSetIMValues: "
"Could not set XNDestroyCallback.\n");
xw.ime.spotlist = XVaCreateNestedList(0, XNSpotLocation, &xw.ime.spot,
NULL);
if (xw.ime.xic == NULL) {
xw.ime.xic = XCreateIC(xw.ime.xim, XNInputStyle,
XIMPreeditNothing | XIMStatusNothing,
XNClientWindow, xw.win,
XNDestroyCallback, &icdestroy,
NULL);
}
if (xw.ime.xic == NULL)
fprintf(stderr, "XCreateIC: Could not create input context.\n");
return 1;
}
void
ximinstantiate(Display *dpy, XPointer client, XPointer call)
{
if (ximopen(dpy))
XUnregisterIMInstantiateCallback(xw.dpy, NULL, NULL, NULL,
ximinstantiate, NULL);
}
void
ximdestroy(XIM xim, XPointer client, XPointer call)
{
xw.ime.xim = NULL;
XRegisterIMInstantiateCallback(xw.dpy, NULL, NULL, NULL,
ximinstantiate, NULL);
XFree(xw.ime.spotlist);
}
int
xicdestroy(XIC xim, XPointer client, XPointer call)
{
xw.ime.xic = NULL;
return 1;
}
2017-01-20 03:06:39 -05:00
void
xinit(int cols, int rows)
2017-01-20 03:06:39 -05:00
{
XGCValues gcvalues;
Window parent;
pid_t thispid = getpid();
XColor xmousefg, xmousebg;
2016-12-21 15:48:07 -05:00
Pixmap blankpm;
2017-01-20 03:06:39 -05:00
if (!(xw.dpy = XOpenDisplay(NULL)))
die("can't open display\n");
2017-01-20 03:06:39 -05:00
xw.scr = XDefaultScreen(xw.dpy);
xw.vis = XDefaultVisual(xw.dpy, xw.scr);
/* font */
if (!FcInit())
die("could not init fontconfig.\n");
2017-01-20 03:06:39 -05:00
usedfont = (opt_font == NULL)? font : opt_font;
xloadfonts(usedfont, 0);
/* colors */
xw.cmap = XDefaultColormap(xw.dpy, xw.scr);
xloadcols();
/* adjust fixed window geometry */
win.w = 2 * borderpx + cols * win.cw;
win.h = 2 * borderpx + rows * win.ch;
2017-01-20 03:06:39 -05:00
if (xw.gm & XNegative)
xw.l += DisplayWidth(xw.dpy, xw.scr) - win.w - 2;
if (xw.gm & YNegative)
xw.t += DisplayHeight(xw.dpy, xw.scr) - win.h - 2;
/* Events */
xw.attrs.background_pixel = dc.col[defaultbg].pixel;
xw.attrs.border_pixel = dc.col[defaultbg].pixel;
xw.attrs.bit_gravity = NorthWestGravity;
xw.attrs.event_mask = FocusChangeMask | KeyPressMask | KeyReleaseMask
2017-01-20 03:06:39 -05:00
| ExposureMask | VisibilityChangeMask | StructureNotifyMask
| ButtonMotionMask | ButtonPressMask | ButtonReleaseMask;
xw.attrs.colormap = xw.cmap;
if (!(opt_embed && (parent = strtol(opt_embed, NULL, 0))))
parent = XRootWindow(xw.dpy, xw.scr);
xw.win = XCreateWindow(xw.dpy, parent, xw.l, xw.t,
win.w, win.h, 0, XDefaultDepth(xw.dpy, xw.scr), InputOutput,
xw.vis, CWBackPixel | CWBorderPixel | CWBitGravity
| CWEventMask | CWColormap, &xw.attrs);
memset(&gcvalues, 0, sizeof(gcvalues));
gcvalues.graphics_exposures = False;
dc.gc = XCreateGC(xw.dpy, parent, GCGraphicsExposures,
&gcvalues);
xw.buf = XCreatePixmap(xw.dpy, xw.win, win.w, win.h,
DefaultDepth(xw.dpy, xw.scr));
XSetForeground(xw.dpy, dc.gc, dc.col[defaultbg].pixel);
XFillRectangle(xw.dpy, xw.buf, dc.gc, 0, 0, win.w, win.h);
/* font spec buffer */
xw.specbuf = xmalloc(cols * sizeof(GlyphFontSpec));
2017-01-20 03:06:39 -05:00
/* Xft rendering context */
xw.draw = XftDrawCreate(xw.dpy, xw.buf, xw.vis, xw.cmap);
/* input methods */
if (!ximopen(xw.dpy)) {
XRegisterIMInstantiateCallback(xw.dpy, NULL, NULL, NULL,
ximinstantiate, NULL);
}
2017-01-20 03:06:39 -05:00
/* white cursor, black outline */
2016-12-21 15:48:07 -05:00
xw.pointerisvisible = 1;
xw.vpointer = XCreateFontCursor(xw.dpy, mouseshape);
XDefineCursor(xw.dpy, xw.win, xw.vpointer);
2017-01-20 03:06:39 -05:00
if (XParseColor(xw.dpy, xw.cmap, colorname[mousefg], &xmousefg) == 0) {
xmousefg.red = 0xffff;
xmousefg.green = 0xffff;
xmousefg.blue = 0xffff;
}
if (XParseColor(xw.dpy, xw.cmap, colorname[mousebg], &xmousebg) == 0) {
xmousebg.red = 0x0000;
xmousebg.green = 0x0000;
xmousebg.blue = 0x0000;
}
2016-12-21 15:48:07 -05:00
XRecolorCursor(xw.dpy, xw.vpointer, &xmousefg, &xmousebg);
blankpm = XCreateBitmapFromData(xw.dpy, xw.win, &(char){0}, 1, 1);
xw.bpointer = XCreatePixmapCursor(xw.dpy, blankpm, blankpm,
&xmousefg, &xmousebg, 0, 0);
2017-01-20 03:06:39 -05:00
xw.xembed = XInternAtom(xw.dpy, "_XEMBED", False);
xw.wmdeletewin = XInternAtom(xw.dpy, "WM_DELETE_WINDOW", False);
xw.netwmname = XInternAtom(xw.dpy, "_NET_WM_NAME", False);
xw.netwmiconname = XInternAtom(xw.dpy, "_NET_WM_ICON_NAME", False);
2017-01-20 03:06:39 -05:00
XSetWMProtocols(xw.dpy, xw.win, &xw.wmdeletewin, 1);
xw.netwmpid = XInternAtom(xw.dpy, "_NET_WM_PID", False);
XChangeProperty(xw.dpy, xw.win, xw.netwmpid, XA_CARDINAL, 32,
PropModeReplace, (uchar *)&thispid, 1);
win.mode = MODE_NUMLOCK;
2017-01-20 03:06:39 -05:00
resettitle();
xhints();
XMapWindow(xw.dpy, xw.win);
2017-01-20 03:06:39 -05:00
XSync(xw.dpy, False);
clock_gettime(CLOCK_MONOTONIC, &xsel.tclick1);
clock_gettime(CLOCK_MONOTONIC, &xsel.tclick2);
xsel.primary = NULL;
xsel.clipboard = NULL;
2017-01-20 03:06:39 -05:00
xsel.xtarget = XInternAtom(xw.dpy, "UTF8_STRING", 0);
if (xsel.xtarget == None)
xsel.xtarget = XA_STRING;
}
int
xmakeglyphfontspecs(XftGlyphFontSpec *specs, const Glyph *glyphs, int len, int x, int y)
{
float winx = borderpx + x * win.cw, winy = borderpx + y * win.ch, xp, yp;
ushort mode, prevmode = USHRT_MAX;
Font *font = &dc.font;
int frcflags = FRC_NORMAL;
float runewidth = win.cw;
Rune rune;
FT_UInt glyphidx;
FcResult fcres;
FcPattern *fcpattern, *fontpattern;
FcFontSet *fcsets[] = { NULL };
FcCharSet *fccharset;
int i, f, numspecs = 0;
for (i = 0, xp = winx, yp = winy + font->ascent; i < len; ++i) {
/* Fetch rune and mode for current glyph. */
rune = glyphs[i].u;
mode = glyphs[i].mode;
/* Skip dummy wide-character spacing. */
if (mode == ATTR_WDUMMY)
continue;
/* Determine font for glyph if different from previous glyph. */
if (prevmode != mode) {
prevmode = mode;
font = &dc.font;
frcflags = FRC_NORMAL;
runewidth = win.cw * ((mode & ATTR_WIDE) ? 2.0f : 1.0f);
if ((mode & ATTR_ITALIC) && (mode & ATTR_BOLD)) {
2016-12-22 14:49:32 -05:00
font = &dc.ifont;
2017-01-20 03:06:39 -05:00
frcflags = FRC_ITALICBOLD;
} else if (mode & ATTR_ITALIC) {
font = &dc.ifont;
frcflags = FRC_ITALIC;
} else if (mode & ATTR_BOLD) {
2016-12-22 14:49:32 -05:00
font = &dc.font;
2017-01-20 03:06:39 -05:00
frcflags = FRC_BOLD;
}
yp = winy + font->ascent;
}
/* Lookup character index with default font. */
glyphidx = XftCharIndex(xw.dpy, font->match, rune);
if (glyphidx) {
specs[numspecs].font = font->match;
specs[numspecs].glyph = glyphidx;
specs[numspecs].x = (short)xp;
specs[numspecs].y = (short)yp;
xp += runewidth;
numspecs++;
continue;
}
/* Fallback on font cache, search the font cache for match. */
for (f = 0; f < frclen; f++) {
glyphidx = XftCharIndex(xw.dpy, frc[f].font, rune);
/* Everything correct. */
if (glyphidx && frc[f].flags == frcflags)
break;
/* We got a default font for a not found glyph. */
if (!glyphidx && frc[f].flags == frcflags
&& frc[f].unicodep == rune) {
break;
}
}
/* Nothing was found. Use fontconfig to find matching font. */
if (f >= frclen) {
if (!font->set)
font->set = FcFontSort(0, font->pattern,
1, 0, &fcres);
fcsets[0] = font->set;
/*
* Nothing was found in the cache. Now use
* some dozen of Fontconfig calls to get the
* font for one single character.
*
* Xft and fontconfig are design failures.
*/
fcpattern = FcPatternDuplicate(font->pattern);
fccharset = FcCharSetCreate();
FcCharSetAddChar(fccharset, rune);
FcPatternAddCharSet(fcpattern, FC_CHARSET,
fccharset);
FcPatternAddBool(fcpattern, FC_SCALABLE, 1);
FcConfigSubstitute(0, fcpattern,
FcMatchPattern);
FcDefaultSubstitute(fcpattern);
fontpattern = FcFontSetMatch(0, fcsets, 1,
fcpattern, &fcres);
/* Allocate memory for the new cache entry. */
if (frclen >= frccap) {
frccap += 16;
frc = xrealloc(frc, frccap * sizeof(Fontcache));
2017-01-20 03:06:39 -05:00
}
frc[frclen].font = XftFontOpenPattern(xw.dpy,
fontpattern);
if (!frc[frclen].font)
die("XftFontOpenPattern failed seeking fallback font: %s\n",
strerror(errno));
2017-01-20 03:06:39 -05:00
frc[frclen].flags = frcflags;
frc[frclen].unicodep = rune;
glyphidx = XftCharIndex(xw.dpy, frc[frclen].font, rune);
f = frclen;
frclen++;
FcPatternDestroy(fcpattern);
FcCharSetDestroy(fccharset);
}
specs[numspecs].font = frc[f].font;
specs[numspecs].glyph = glyphidx;
specs[numspecs].x = (short)xp;
specs[numspecs].y = (short)yp;
xp += runewidth;
numspecs++;
}
return numspecs;
}
void
xdrawglyphfontspecs(const XftGlyphFontSpec *specs, Glyph base, int len, int x, int y)
{
int charlen = len * ((base.mode & ATTR_WIDE) ? 2 : 1);
int winx = borderpx + x * win.cw, winy = borderpx + y * win.ch,
width = charlen * win.cw;
Color *fg, *bg, *temp, revfg, revbg, truefg, truebg;
XRenderColor colfg, colbg;
XRectangle r;
/* Fallback on color display for attributes not supported by the font */
if (base.mode & ATTR_ITALIC && base.mode & ATTR_BOLD) {
if (dc.ibfont.badslant || dc.ibfont.badweight)
base.fg = defaultattr;
} else if ((base.mode & ATTR_ITALIC && dc.ifont.badslant) ||
(base.mode & ATTR_BOLD && dc.bfont.badweight)) {
base.fg = defaultattr;
}
if (IS_TRUECOL(base.fg)) {
colfg.alpha = 0xffff;
colfg.red = TRUERED(base.fg);
colfg.green = TRUEGREEN(base.fg);
colfg.blue = TRUEBLUE(base.fg);
XftColorAllocValue(xw.dpy, xw.vis, xw.cmap, &colfg, &truefg);
fg = &truefg;
} else {
fg = &dc.col[base.fg];
}
if (IS_TRUECOL(base.bg)) {
colbg.alpha = 0xffff;
colbg.green = TRUEGREEN(base.bg);
colbg.red = TRUERED(base.bg);
colbg.blue = TRUEBLUE(base.bg);
XftColorAllocValue(xw.dpy, xw.vis, xw.cmap, &colbg, &truebg);
bg = &truebg;
} else {
bg = &dc.col[base.bg];
}
/* Change basic system colors [0-7] to bright system colors [8-15] */
if ((base.mode & ATTR_BOLD_FAINT) == ATTR_BOLD && BETWEEN(base.fg, 0, 7))
fg = &dc.col[base.fg];
2017-01-20 03:06:39 -05:00
if (IS_SET(MODE_REVERSE)) {
if (fg == &dc.col[defaultfg]) {
fg = &dc.col[defaultbg];
} else {
colfg.red = ~fg->color.red;
colfg.green = ~fg->color.green;
colfg.blue = ~fg->color.blue;
colfg.alpha = fg->color.alpha;
XftColorAllocValue(xw.dpy, xw.vis, xw.cmap, &colfg,
&revfg);
fg = &revfg;
}
if (bg == &dc.col[defaultbg]) {
bg = &dc.col[defaultfg];
} else {
colbg.red = ~bg->color.red;
colbg.green = ~bg->color.green;
colbg.blue = ~bg->color.blue;
colbg.alpha = bg->color.alpha;
XftColorAllocValue(xw.dpy, xw.vis, xw.cmap, &colbg,
&revbg);
bg = &revbg;
}
}
if ((base.mode & ATTR_BOLD_FAINT) == ATTR_FAINT) {
colfg.red = fg->color.red / 2;
colfg.green = fg->color.green / 2;
colfg.blue = fg->color.blue / 2;
colfg.alpha = fg->color.alpha;
2017-01-20 03:06:39 -05:00
XftColorAllocValue(xw.dpy, xw.vis, xw.cmap, &colfg, &revfg);
fg = &revfg;
}
if (base.mode & ATTR_REVERSE) {
temp = fg;
fg = bg;
bg = temp;
}
if (base.mode & ATTR_BLINK && win.mode & MODE_BLINK)
2017-01-20 03:06:39 -05:00
fg = bg;
if (base.mode & ATTR_INVISIBLE)
fg = bg;
/* Intelligent cleaning up of the borders. */
if (x == 0) {
xclear(0, (y == 0)? 0 : winy, borderpx,
winy + win.ch +
((winy + win.ch >= borderpx + win.th)? win.h : 0));
2017-01-20 03:06:39 -05:00
}
if (winx + width >= borderpx + win.tw) {
2017-01-20 03:06:39 -05:00
xclear(winx + width, (y == 0)? 0 : winy, win.w,
((winy + win.ch >= borderpx + win.th)? win.h : (winy + win.ch)));
2017-01-20 03:06:39 -05:00
}
if (y == 0)
xclear(winx, 0, winx + width, borderpx);
if (winy + win.ch >= borderpx + win.th)
2017-01-20 03:06:39 -05:00
xclear(winx, winy + win.ch, winx + width, win.h);
/* Clean up the region we want to draw to. */
XftDrawRect(xw.draw, bg, winx, winy, width, win.ch);
/* Set the clip region because Xft is sometimes dirty. */
r.x = 0;
r.y = 0;
r.height = win.ch;
r.width = width;
XftDrawSetClipRectangles(xw.draw, winx, winy, &r, 1);
/* Render the glyphs. */
XftDrawGlyphFontSpec(xw.draw, fg, specs, len);
/* Render underline and strikethrough. */
if (base.mode & ATTR_UNDERLINE) {
XftDrawRect(xw.draw, fg, winx, winy + dc.font.ascent * chscale + 1,
2017-01-20 03:06:39 -05:00
width, 1);
}
if (base.mode & ATTR_STRUCK) {
XftDrawRect(xw.draw, fg, winx, winy + 2 * dc.font.ascent * chscale / 3,
2017-01-20 03:06:39 -05:00
width, 1);
}
/* Reset clip to none. */
XftDrawSetClip(xw.draw, 0);
}
void
xdrawglyph(Glyph g, int x, int y)
{
int numspecs;
XftGlyphFontSpec spec;
numspecs = xmakeglyphfontspecs(&spec, &g, 1, x, y);
xdrawglyphfontspecs(&spec, g, numspecs, x, y);
}
void
xdrawcursor(int cx, int cy, Glyph g, int ox, int oy, Glyph og)
2017-01-20 03:06:39 -05:00
{
Color drawcol;
/* remove the old cursor */
if (selected(ox, oy))
2017-01-20 03:06:39 -05:00
og.mode ^= ATTR_REVERSE;
xdrawglyph(og, ox, oy);
2017-01-20 03:06:39 -05:00
if (IS_SET(MODE_HIDE))
return;
2017-01-20 03:06:39 -05:00
/*
* Select the right color for the right mode.
*/
g.mode &= ATTR_BOLD|ATTR_ITALIC|ATTR_UNDERLINE|ATTR_STRUCK|ATTR_WIDE;
2018-07-14 05:16:36 -04:00
if (IS_SET(MODE_REVERSE)) {
g.mode |= ATTR_REVERSE;
g.bg = defaultfg;
if (selected(cx, cy)) {
drawcol = dc.col[defaultcs];
g.fg = defaultrcs;
} else {
drawcol = dc.col[defaultrcs];
g.fg = defaultcs;
}
} else {
if (selected(cx, cy)) {
g.fg = defaultfg;
g.bg = defaultrcs;
} else {
g.fg = defaultbg;
g.bg = defaultcs;
}
drawcol = dc.col[g.bg];
2017-01-20 03:06:39 -05:00
}
/* draw the new one */
if (IS_SET(MODE_FOCUSED)) {
2017-01-20 03:06:39 -05:00
switch (win.cursor) {
case 7: /* st extension */
g.u = 0x2603; /* snowman (U+2603) */
/* FALLTHROUGH */
2017-01-20 03:06:39 -05:00
case 0: /* Blinking Block */
case 1: /* Blinking Block (Default) */
case 2: /* Steady Block */
xdrawglyph(g, cx, cy);
2017-01-20 03:06:39 -05:00
break;
case 3: /* Blinking Underline */
case 4: /* Steady Underline */
XftDrawRect(xw.draw, &drawcol,
borderpx + cx * win.cw,
borderpx + (cy + 1) * win.ch - \
2017-01-20 03:06:39 -05:00
cursorthickness,
win.cw, cursorthickness);
break;
case 5: /* Blinking bar */
case 6: /* Steady bar */
XftDrawRect(xw.draw, &drawcol,
borderpx + cx * win.cw,
borderpx + cy * win.ch,
2017-01-20 03:06:39 -05:00
cursorthickness, win.ch);
break;
}
} else {
XftDrawRect(xw.draw, &drawcol,
borderpx + cx * win.cw,
borderpx + cy * win.ch,
2017-01-20 03:06:39 -05:00
win.cw - 1, 1);
XftDrawRect(xw.draw, &drawcol,
borderpx + cx * win.cw,
borderpx + cy * win.ch,
2017-01-20 03:06:39 -05:00
1, win.ch - 1);
XftDrawRect(xw.draw, &drawcol,
borderpx + (cx + 1) * win.cw - 1,
borderpx + cy * win.ch,
2017-01-20 03:06:39 -05:00
1, win.ch - 1);
XftDrawRect(xw.draw, &drawcol,
borderpx + cx * win.cw,
borderpx + (cy + 1) * win.ch - 1,
2017-01-20 03:06:39 -05:00
win.cw, 1);
}
}
void
xsetenv(void)
{
char buf[sizeof(long) * 8 + 1];
snprintf(buf, sizeof(buf), "%lu", xw.win);
setenv("WINDOWID", buf, 1);
}
void
xseticontitle(char *p)
{
XTextProperty prop;
DEFAULT(p, opt_title);
if (Xutf8TextListToTextProperty(xw.dpy, &p, 1, XUTF8StringStyle,
&prop) != Success)
return;
XSetWMIconName(xw.dpy, xw.win, &prop);
XSetTextProperty(xw.dpy, xw.win, &prop, xw.netwmiconname);
XFree(prop.value);
}
2017-01-20 03:06:39 -05:00
void
xsettitle(char *p)
{
XTextProperty prop;
DEFAULT(p, opt_title);
2017-01-20 03:06:39 -05:00
if (Xutf8TextListToTextProperty(xw.dpy, &p, 1, XUTF8StringStyle,
&prop) != Success)
return;
2017-01-20 03:06:39 -05:00
XSetWMName(xw.dpy, xw.win, &prop);
XSetTextProperty(xw.dpy, xw.win, &prop, xw.netwmname);
XFree(prop.value);
}
int
xstartdraw(void)
2017-01-20 03:06:39 -05:00
{
return IS_SET(MODE_VISIBLE);
2017-01-20 03:06:39 -05:00
}
void
xdrawline(Line line, int x1, int y1, int x2)
2017-01-20 03:06:39 -05:00
{
int i, x, ox, numspecs;
2017-01-20 03:06:39 -05:00
Glyph base, new;
XftGlyphFontSpec *specs = xw.specbuf;
2017-01-20 03:06:39 -05:00
numspecs = xmakeglyphfontspecs(specs, &line[x1], x2 - x1, x1, y1);
i = ox = 0;
for (x = x1; x < x2 && i < numspecs; x++) {
new = line[x];
if (new.mode == ATTR_WDUMMY)
2017-01-20 03:06:39 -05:00
continue;
if (selected(x, y1))
new.mode ^= ATTR_REVERSE;
if (i > 0 && ATTRCMP(base, new)) {
xdrawglyphfontspecs(specs, base, i, ox, y1);
specs += i;
numspecs -= i;
i = 0;
2017-01-20 03:06:39 -05:00
}
if (i == 0) {
ox = x;
base = new;
}
i++;
2017-01-20 03:06:39 -05:00
}
if (i > 0)
xdrawglyphfontspecs(specs, base, i, ox, y1);
}
void
xfinishdraw(void)
{
XCopyArea(xw.dpy, xw.buf, xw.win, dc.gc, 0, 0, win.w,
win.h, 0, 0);
XSetForeground(xw.dpy, dc.gc,
dc.col[IS_SET(MODE_REVERSE)?
defaultfg : defaultbg].pixel);
2017-01-20 03:06:39 -05:00
}
void
xximspot(int x, int y)
{
if (xw.ime.xic == NULL)
return;
xw.ime.spot.x = borderpx + x * win.cw;
xw.ime.spot.y = borderpx + (y + 1) * win.ch;
XSetICValues(xw.ime.xic, XNPreeditAttributes, xw.ime.spotlist, NULL);
}
2017-01-20 03:06:39 -05:00
void
expose(XEvent *ev)
{
redraw();
}
void
visibility(XEvent *ev)
{
XVisibilityEvent *e = &ev->xvisibility;
MODBIT(win.mode, e->state != VisibilityFullyObscured, MODE_VISIBLE);
2017-01-20 03:06:39 -05:00
}
void
unmap(XEvent *ev)
{
win.mode &= ~MODE_VISIBLE;
2017-01-20 03:06:39 -05:00
}
void
xsetpointermotion(int set)
{
2016-12-21 15:48:07 -05:00
if (!set && !xw.pointerisvisible)
return;
2017-01-20 03:06:39 -05:00
MODBIT(xw.attrs.event_mask, set, PointerMotionMask);
XChangeWindowAttributes(xw.dpy, xw.win, CWEventMask, &xw.attrs);
}
void
xsetmode(int set, unsigned int flags)
{
int mode = win.mode;
MODBIT(win.mode, set, flags);
if ((win.mode & MODE_REVERSE) != (mode & MODE_REVERSE))
redraw();
}
int
xsetcursor(int cursor)
{
if (!BETWEEN(cursor, 0, 7)) /* 7: st extension */
return 1;
win.cursor = cursor;
return 0;
}
2017-01-20 03:06:39 -05:00
void
xseturgency(int add)
{
XWMHints *h = XGetWMHints(xw.dpy, xw.win);
MODBIT(h->flags, add, XUrgencyHint);
XSetWMHints(xw.dpy, xw.win, h);
XFree(h);
}
void
xbell(void)
2017-01-20 03:06:39 -05:00
{
if (!(IS_SET(MODE_FOCUSED)))
xseturgency(1);
if (bellvolume)
XkbBell(xw.dpy, xw.win, bellvolume, (Atom)NULL);
2017-01-20 03:06:39 -05:00
}
void
focus(XEvent *ev)
{
XFocusChangeEvent *e = &ev->xfocus;
if (e->mode == NotifyGrab)
return;
if (ev->type == FocusIn) {
if (xw.ime.xic)
XSetICFocus(xw.ime.xic);
win.mode |= MODE_FOCUSED;
2017-01-20 03:06:39 -05:00
xseturgency(0);
if (IS_SET(MODE_FOCUS))
ttywrite("\033[I", 3, 0);
2017-01-20 03:06:39 -05:00
} else {
if (xw.ime.xic)
XUnsetICFocus(xw.ime.xic);
win.mode &= ~MODE_FOCUSED;
2017-01-20 03:06:39 -05:00
if (IS_SET(MODE_FOCUS))
ttywrite("\033[O", 3, 0);
2017-01-20 03:06:39 -05:00
}
}
int
match(uint mask, uint state)
{
return mask == XK_ANY_MOD || mask == (state & ~ignoremod);
}
char*
kmap(KeySym k, uint state)
{
Key *kp;
int i;
/* Check for mapped keys out of X11 function keys. */
for (i = 0; i < LEN(mappedkeys); i++) {
if (mappedkeys[i] == k)
break;
}
if (i == LEN(mappedkeys)) {
if ((k & 0xFFFF) < 0xFD00)
return NULL;
}
for (kp = key; kp < key + LEN(key); kp++) {
if (kp->k != k)
continue;
if (!match(kp->mask, state))
continue;
if (IS_SET(MODE_APPKEYPAD) ? kp->appkey < 0 : kp->appkey > 0)
continue;
if (IS_SET(MODE_NUMLOCK) && kp->appkey == 2)
continue;
if (IS_SET(MODE_APPCURSOR) ? kp->appcursor < 0 : kp->appcursor > 0)
continue;
return kp->s;
}
return NULL;
}
2017-01-20 03:06:39 -05:00
void
kpress(XEvent *ev)
{
XKeyEvent *e = &ev->xkey;
KeySym ksym = NoSymbol;
char buf[64], *customkey;
2017-01-20 03:06:39 -05:00
int len;
Rune c;
Status status;
Shortcut *bp;
2016-12-21 15:48:07 -05:00
if (xw.pointerisvisible) {
XDefineCursor(xw.dpy, xw.win, xw.bpointer);
xsetpointermotion(1);
xw.pointerisvisible = 0;
}
2017-01-20 03:06:39 -05:00
if (IS_SET(MODE_KBDLOCK))
return;
if (xw.ime.xic) {
len = XmbLookupString(xw.ime.xic, e, buf, sizeof buf, &ksym, &status);
if (status == XBufferOverflow)
return;
} else {
len = XLookupString(e, buf, sizeof buf, &ksym, NULL);
}
2017-01-20 03:06:39 -05:00
/* 1. shortcuts */
for (bp = shortcuts; bp < shortcuts + LEN(shortcuts); bp++) {
2017-01-20 03:06:39 -05:00
if (ksym == bp->keysym && match(bp->mod, e->state)) {
bp->func(&(bp->arg));
return;
}
}
/* 2. custom keys from config.h */
if ((customkey = kmap(ksym, e->state))) {
ttywrite(customkey, strlen(customkey), 1);
2017-01-20 03:06:39 -05:00
return;
}
/* 3. composed string from input method */
if (len == 0)
return;
if (len == 1 && e->state & Mod1Mask) {
if (IS_SET(MODE_8BIT)) {
if (*buf < 0177) {
c = *buf | 0x80;
len = utf8encode(c, buf);
}
} else {
buf[1] = buf[0];
buf[0] = '\033';
len = 2;
}
}
ttywrite(buf, len, 1);
2017-01-20 03:06:39 -05:00
}
void
cmessage(XEvent *e)
{
/*
* See xembed specs
* http://standards.freedesktop.org/xembed-spec/xembed-spec-latest.html
*/
if (e->xclient.message_type == xw.xembed && e->xclient.format == 32) {
if (e->xclient.data.l[1] == XEMBED_FOCUS_IN) {
win.mode |= MODE_FOCUSED;
2017-01-20 03:06:39 -05:00
xseturgency(0);
} else if (e->xclient.data.l[1] == XEMBED_FOCUS_OUT) {
win.mode &= ~MODE_FOCUSED;
2017-01-20 03:06:39 -05:00
}
} else if (e->xclient.data.l[0] == xw.wmdeletewin) {
ttyhangup();
2017-01-20 03:06:39 -05:00
exit(0);
}
}
void
resize(XEvent *e)
{
if (e->xconfigure.width == win.w && e->xconfigure.height == win.h)
return;
cresize(e->xconfigure.width, e->xconfigure.height);
}
void
run(void)
{
XEvent ev;
int w = win.w, h = win.h;
fd_set rfd;
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
int xfd = XConnectionNumber(xw.dpy), ttyfd, xev, drawing;
struct timespec seltv, *tv, now, lastblink, trigger;
double timeout;
2017-01-20 03:06:39 -05:00
/* Waiting for window mapping */
do {
XNextEvent(xw.dpy, &ev);
/*
* This XFilterEvent call is required because of XOpenIM. It
* does filter out the key event and some client message for
* the input method too.
*/
if (XFilterEvent(&ev, None))
continue;
if (ev.type == ConfigureNotify) {
w = ev.xconfigure.width;
h = ev.xconfigure.height;
}
} while (ev.type != MapNotify);
ttyfd = ttynew(opt_line, shell, opt_io, opt_cmd);
cresize(w, h);
2017-01-20 03:06:39 -05:00
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
for (timeout = -1, drawing = 0, lastblink = (struct timespec){0};;) {
2017-01-20 03:06:39 -05:00
FD_ZERO(&rfd);
FD_SET(ttyfd, &rfd);
2017-01-20 03:06:39 -05:00
FD_SET(xfd, &rfd);
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
if (XPending(xw.dpy))
timeout = 0; /* existing events might not set xfd */
seltv.tv_sec = timeout / 1E3;
seltv.tv_nsec = 1E6 * (timeout - 1E3 * seltv.tv_sec);
tv = timeout >= 0 ? &seltv : NULL;
if (pselect(MAX(xfd, ttyfd)+1, &rfd, NULL, NULL, tv, NULL) < 0) {
2017-01-20 03:06:39 -05:00
if (errno == EINTR)
continue;
die("select failed: %s\n", strerror(errno));
}
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
clock_gettime(CLOCK_MONOTONIC, &now);
2017-01-20 03:06:39 -05:00
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
if (FD_ISSET(ttyfd, &rfd))
ttyread();
2017-01-20 03:06:39 -05:00
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
xev = 0;
while (XPending(xw.dpy)) {
xev = 1;
XNextEvent(xw.dpy, &ev);
if (XFilterEvent(&ev, None))
continue;
if (handler[ev.type])
(handler[ev.type])(&ev);
2017-01-20 03:06:39 -05:00
}
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
/*
* To reduce flicker and tearing, when new content or event
* triggers drawing, we first wait a bit to ensure we got
* everything, and if nothing new arrives - we draw.
* We start with trying to wait minlatency ms. If more content
* arrives sooner, we retry with shorter and shorter periods,
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
* and eventually draw even without idle after maxlatency ms.
* Typically this results in low latency while interacting,
* maximum latency intervals during `cat huge.txt`, and perfect
* sync with periodic updates from animations/key-repeats/etc.
*/
if (FD_ISSET(ttyfd, &rfd) || xev) {
if (!drawing) {
trigger = now;
drawing = 1;
2017-01-20 03:06:39 -05:00
}
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
timeout = (maxlatency - TIMEDIFF(now, trigger)) \
/ maxlatency * minlatency;
if (timeout > 0)
continue; /* we have time, try to find idle */
}
2017-01-20 03:06:39 -05:00
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
/* idle detected or maxlatency exhausted -> draw */
timeout = -1;
if (blinktimeout && tattrset(ATTR_BLINK)) {
timeout = blinktimeout - TIMEDIFF(now, lastblink);
if (timeout <= 0) {
if (-timeout > blinktimeout) /* start visible */
win.mode |= MODE_BLINK;
win.mode ^= MODE_BLINK;
tsetdirtattr(ATTR_BLINK);
lastblink = now;
timeout = blinktimeout;
2017-01-20 03:06:39 -05:00
}
}
auto-sync: draw on idle to avoid flicker/tearing st could easily tear/flicker with animation or other unattended output. This commit eliminates most of the tear/flicker. Before this commit, the display timing had two "modes": - Interactively, st was waiting fixed `1000/xfps` ms after forwarding the kb/mouse event to the application and before drawing. - Unattended, and specifically with animations, the draw frequency was throttled to `actionfps`. Animation at a higher rate would throttle and likely tear, and at lower rates it was tearing big frames (specifically, when one `read` didn't get a full "frame"). The interactive behavior was decent, but it was impossible to get good unattended-draw behavior even with carefully chosen configuration. This commit changes the behavior such that it draws on idle instead of using fixed latency/frequency. This means that it tries to draw only when it's very likely that the application has completed its output (or after some duration without idle), so it mostly succeeds to avoid tear, flicker, and partial drawing. The config values minlatency/maxlatency replace xfps/actionfps and define the range which the algorithm is allowed to wait from the initial draw-trigger until the actual draw. The range enables the flexibility to choose when to draw - when least likely to flicker. It also unifies the interactive and unattended behavior and config values, which makes the code simpler as well - without sacrificing latency during interactive use, because typically interactively idle arrives very quickly, so the wait is typically minlatency. While it only slighly improves interactive behavior, for animations and other unattended-drawing it improves greatly, as it effectively adapts to any [animation] output rate without tearing, throttling, redundant drawing, or unnecessary delays (sounds impossible, but it works).
2019-02-26 15:37:49 -05:00
draw();
XFlush(xw.dpy);
drawing = 0;
2017-01-20 03:06:39 -05:00
}
}
void
usage(void)
{
die("usage: %s [-aiv] [-c class] [-f font] [-g geometry]"
" [-n name] [-o file]\n"
" [-T title] [-t title] [-w windowid]"
" [[-e] command [args ...]]\n"
" %s [-aiv] [-c class] [-f font] [-g geometry]"
" [-n name] [-o file]\n"
" [-T title] [-t title] [-w windowid] -l line"
" [stty_args ...]\n", argv0, argv0);
}
2017-01-20 03:06:39 -05:00
int
main(int argc, char *argv[])
{
xw.l = xw.t = 0;
xw.isfixed = False;
xsetcursor(cursorshape);
2017-01-20 03:06:39 -05:00
ARGBEGIN {
case 'a':
allowaltscreen = 0;
break;
case 'c':
opt_class = EARGF(usage());
break;
case 'e':
if (argc > 0)
--argc, ++argv;
goto run;
case 'f':
opt_font = EARGF(usage());
break;
case 'g':
xw.gm = XParseGeometry(EARGF(usage()),
&xw.l, &xw.t, &cols, &rows);
break;
case 'i':
xw.isfixed = 1;
break;
case 'o':
opt_io = EARGF(usage());
break;
case 'l':
opt_line = EARGF(usage());
break;
case 'n':
opt_name = EARGF(usage());
break;
case 't':
case 'T':
opt_title = EARGF(usage());
break;
case 'w':
opt_embed = EARGF(usage());
break;
case 'v':
2018-03-29 12:18:30 -04:00
die("%s " VERSION "\n", argv0);
2017-01-20 03:06:39 -05:00
break;
default:
usage();
} ARGEND;
run:
2018-03-16 11:19:18 -04:00
if (argc > 0) /* eat all remaining arguments */
2017-01-20 03:06:39 -05:00
opt_cmd = argv;
2018-03-16 11:19:18 -04:00
if (!opt_title)
opt_title = (opt_line || !opt_cmd) ? "st" : opt_cmd[0];
2017-01-20 03:06:39 -05:00
setlocale(LC_CTYPE, "");
XSetLocaleModifiers("");
cols = MAX(cols, 1);
rows = MAX(rows, 1);
tnew(cols, rows);
xinit(cols, rows);
xsetenv();
2017-01-20 03:06:39 -05:00
selinit();
run();
return 0;
}